Коридор и прихожая

В состав каких органоидов клетки входит рнк. Органеллы (органоиды) клетки. Структуры, общие для животных и растительных клеток

В состав каких органоидов клетки входит рнк. Органеллы (органоиды) клетки. Структуры, общие для животных и растительных клеток

Приглашаем Вас ознакомиться с материалами и .

: целлюлозная оболочка, мембрана, цитоплазма с органоидами, ядро, вакуоли с клеточным соком.

Наличие пластид - главная особенность растительной клетки.


Функции клеточной оболочки - определяет форму клетки, защищает от факторов внешней среды.

Плазматическая мембрана - тонкая пленка, состоит из взаимодействующих молекул липидов и белков, отграничивает внутреннее содержимое от внешней среды, обеспечивает транспорт в клетку воды, минеральных и органических веществ путем осмоса и активного переноса, а также удаляет продукты жизнедеятельности.

Цитоплазма - внутренняя полужидкая среда клетки, в которой расположено ядро и органоиды, обеспечивает связи между ними, участвует в основных процессах жизнедеятельности.

Эндоплазматическая сеть - сеть ветвящихся каналов в цитоплазме. Она участвует в синтезе белков, липидов и углеводов, в транспорте веществ. Рибосомы - тельца, расположенные на ЭПС или в цитоплазме, состоят из РНК и белка, участвуют в синтезе белка. ЭПС и рибосомы - единый аппарат синтеза и транспорта белков.

Митохондрии - органоиды, отграниченные от цитоплазмы двумя мембранами. В них окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. Увеличение поверхности внутренней мембраны, на которой расположены ферменты за счет крист. АТФ - богатое энергией органическое вещество.

Пластиды (хлоропласты, лейкопласты, хромопласты), их содержание в клетке - главная особенность растительного организма. Хлоропласты - пластиды, содержащие зеленый пигмент хлорофилл, который поглощает энергию света и использует ее на синтез органических веществ из углекислого газа и воды. Отграничение хлоропластов от цитоплазмы двумя мембранами, многочисленные выросты - граны на внутренней мембране, в которых расположены молекулы хлорофилла и ферменты.

Комплекс Гольджи - система полостей, отграниченных от цитоплазмы мембраной. Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов.

Лизосомы - тельца, отграниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки.

Вакуоли - полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке.

Ядро - главная часть клетки, покрытая снаружи двух мембранной, пронизанной порами ядерной оболочкой. Вещества поступают в ядро и удаляются из него через поры. Хромосомы - носители наследственной информации о признаках организма, основные структуры ядра, каждая из которых состоит из одной молекулы ДНК в соединении с белками. Ядро - место синтеза ДНК, и-РНК, р-РНК.



Наличие наружной мембраны, цитоплазмы с органоидами, ядра с хромосомами.

Наружная, или плазматическая, мембрана - отграничивает содержимое клетки от окружающей среды (других клеток, межклеточного вещества), состоит из молекул липидов и белка, обеспечивает связь между клетками, транспорт веществ в клетку (пиноцитоз, фагоцитоз) и из клетки.

Цитоплазма - внутренняя полужидкая среда клетки, которая обеспечивает связь между расположенными в ней ядром и органоидами. В цитоплазме протекают основные процессы жизнедеятельности.

Органоиды клетки:

1) эндоплазматическая сеть (ЭПС) - система ветвящихся канальцев, участвует в синтезе белков, липидов и углеводов, в транспорте веществ в клетке;

2) рибосомы - тельца, содержащие рРНК, расположены на ЭПС и в цитоплазме, участвуют в синтезе белка. ЭПС и рибосомы - единый аппарат синтеза и транспорта белка;

3) митохондрии - «силовые станции» клетки, отграничены от цитоплазмы двумя мембранами. Внутренняя образует кристы (складки), увеличивающие ее поверхность. Ферменты на кристах ускоряют реакции окисления органических веществ и синтеза молекул АТФ, богатых энергией;

4) комплекс Гольджи - группа полостей, отграниченных мембраной от цитоплазмы, заполненных белками, жирами и углеводами, которые либо используются в процессах жизнедеятельности, либо удаляются из клетки. На мембранах комплекса осуществляется синтез жиров и углеводов;

5) лизосомы - тельца, заполненные ферментами, ускоряют реакции расщепления белков до аминокислот, липидов до глицерина и жирных -.кислот, полисахаридов до моносахаридов. В лизосомах разрушаются отмершие части клетки, целые и клетки.

Клеточные включения - скопления запасных питательных веществ: белков, жиров и углеводов.

Ядро - наиболее важная часть клетки. Оно покрыто двухмембранной оболочкой с порами, через которые одни вещества проникают в ядро, а Другие поступают в цитоплазму. Хромосомы - основные структуры ядра, носители наследственной информации о признаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с половыми клетками - дочерним организмам. Ядро - место синтеза ДНК, иРНК, рРНК.

Задание:

Поясните, почему органоиды называют специализированными структурами клетки?

Ответ: органоиды называют специализированными структурами клетки, так как они выполняют строго определенные функции, в ядре хранится наследственная информация, в митохондриях синтезируется АТФ, в хлоропластах протекает фотосинтез и т.д.

Если у Вас есть вопросы по цитологии, то Вы можете обратиться за помощью к

Тип урока : комбинированный.

Методы : словесный, наглядный, практический, проблемно-поисковый.

Цели урока

Образовательная: углубить знания учащихся о строении клеток эукариот, научить применять их на практических занятиях.

Развивающие: совершенствовать умения учащихся работать с дидактическим материалом; развивать мышление учащихся, предлагая задания для сравнения клеток прокариот и эукариот, клеток растений и клетки животных с выявлением схожих и отличительных признаков.

Оборудование : плакат «Строение цитоплазматической мембраны»; карточки-задания; раздаточный материал (строение прокариотической клетки, типичная растительная клетка, строение животной клетки).

Межпредметные связи : ботаника, зоология, анатомия и физиология человека.

План урока

I. Организационный момент

Проверка готовности к уроку.
Проверка списочного состава учащихся.
Сообщение темы и целей урока.

II. Изучение нового материала

Разделение организмов на про- и эукариоты

По форме клетки необычайно разнообразны: одни имеют округлую форму, другие похожи на звездочки со многими лучами, третьи вытянутые и т.д. Различны клетки и по размеру – от мельчайших, с трудом различимых в световом микроскопе, до прекрасно видимых невооруженным глазом (например, икринки рыб и лягушек).

Любое неоплодотворенное яйцо, в том числе гигантские окаменевшие яйца ископаемых динозавров, которые хранятся в палеонтологических музеях, тоже были когда-то живыми клетками. Однако, если говорить о главных элементах внутреннего строения, все клетки схожи между собой.

Прокариоты (от лат. pro – перед, раньше, вместо и греч. karyon – ядро) – это организмы, клетки которых не имеют ограниченного мембраной ядра, т.е. все бактерии, включая архебактерии и цианобактерии. Общее число видов прокариот около 6000. Вся генетическая информация прокариотической клетки (генофор) содержится в одной-единственной кольцевой молекуле ДНК. Митохондрии и хлоропласты отсутствуют, а функции дыхания или фотосинтеза, обеспечивающие клетку энергией, выполняет плазматическая мембрана (рис. 1). Размножаются прокариоты без выраженного полового процесса путем деления надвое. Прокариоты способны осуществлять целый ряд специфических физиологических процессов: фиксируют молекулярный азот, осуществляют молочнокислое брожение, разлагают древесину, окисляют серу и железо.

После вступительной беседы учащиеся рассматривают строение прокариотической клетки, сравнивая основные особенности строения с типами эукариотической клетки (рис. 1).

Эукариоты – это высшие организмы, имеющие четко оформленное ядро, которое оболочкой отделяется от цитоплазмы (кариомембраной). К эукариотам относятся все высшие животные и растения, а также одноклеточные и многоклеточные водоросли, грибы и простейшие. Ядерная ДНК у эукариот заключена в хромосомах. Эукариоты обладают клеточными органоидами, ограниченными мембранами.

Отличия эукариот от прокариот

– Эукариоты имеют настоящее ядро: генетический аппарат эукариотической клетки защищен оболочкой, схожей с оболочкой самой клетки.
– Включенные в цитоплазму органоиды окружены мембраной.

Строение клеток растений и животных

Клетка любого организма представляет собой сис-тему. Она состоит из трех взаимосвязанных между собой частей: оболочки, ядра и цитоплазмы.

При изучении ботаники, зоологии и анатомии человека вы уже знакомились со строением различных типов клеток. Кратко повторим этот материал.

Задание 1. Определите по рисунку 2, каким организмам и типам тканей соответствуют клетки под цифрами 1–12. Чем обусловлена их форма?

Строение и функции органоидов растительных и животных клеток

Используя рисунки 3 и 4 и пользуясь Биологическим энциклопедическим словарем и учебником, учащиеся заполняют таблицу, сравнивая животную и растительную клетки.

Таблица. Строение и функции органоидов растительных и животных клеток

Органоиды клетки

Строение органоидов

Функция

Присутствие органоидов в клетках

растений

животных

Хлоропласт

Представляет собой разновидность пластид

Окрашивает растения в зеленый цвет, в нем происходит фотосинтез

Лейкопласт

Оболочка состоит из двух элементарных мембран; внутренняя, врастая в строму, образует немногочисленные тилакоиды

Синтезирует и накапливает крахмал, масла, белки

Хромопласт

Пластиды с желтой, оранжевой и красной окраской, окраска обусловлена пигментами – каротиноидами

Красная, желтая окраска осенних листьев, сочных плодов и др.

Занимает до 90% объема зрелой клетки, заполнена клеточным соком

Поддержание тургора, накопление запасных веществ и продуктов обмена, регуляция осмотического давления и др.

Микротрубочки

Состоят из белка тубулина, расположены около плазматической мембраны

Участвуют в отложении целлюлозы на клеточных стенках, перемещении в цитоплазме различных органоидов. При делении клетки микротрубочки составляют основу структуры веретена деления

Плазматическая мембрана (ЦПМ)

Состоит из липидного бислоя, пронизанного белками, погруженными на различную глубину

Барьер, транспорт веществ, сообщение клеток между собой

Гладкий ЭПР

Система плоских и ветвящихся трубочек

Осуществляет синтез и выделение липидов

Шероховатый ЭПР

Название получил из-за множества рибосом, находящихся на его поверхности

Синтез белков, их накопление и преобразование для выделения из клетки наружу

Окружено двойной ядерной мембраной, имеющей поры. Наружная ядерная мембрана образует непрерывную структуру с мембраной ЭПР. Содержит одно или несколько ядрышек

Носитель наследственной информации, центр регуляции активности клетки

Клеточная стенка

Состоит из длинных молекул целлюлозы, собранных в пучки, называемые микрофибриллами

Внешний каркас, защитная оболочка

Плазмодесмы

Мельчайшие цитоплазматические каналы, которые пронизывают клеточные стенки

Объединяют протопласты соседних клеток

Митохондрии

Синтез АТФ (аккумуляция энергии)

Аппарат Гольджи

Состоит из стопки плоских мешочков – цистерн, или диктиосом

Синтез полисахаридов, формирование ЦПМ и лизосом

Лизосомы

Внутриклеточное пищеварение

Рибосомы

Состоят из двух неравных субъединиц –
большой и малой, на которые могут диссоциировать

Место биосинтеза белка

Цитоплазма

Состоит из воды с большим количеством растворенных в ней веществ, содержащих глюкозу, белки и ионы

В ней расположены другие органоиды клетки и осуществляются все процессы клеточного метаболизма

Микрофиламенты

Волокна из белка актина, обычно располагаются пучками вблизи поверхности клеток

Участвуют в подвижности и изменении формы клеток

Центриоли

Могут входить в состав митотического аппарата клетки. В диплоидной клетке содержится две пары центриолей

Участвуют в процессе деления клетки у животных; в зооспорах водорослей, мхов и у простейших образуют базальные тельца ресничек

Микроворсинки

Выступы плазматической мембраны

Увеличивают наружную поверхность клетки, микроворсинки в совокупности образуют кайму клетки

Выводы

1. Клеточная стенка, пластиды и центральная вакуоль присущи только растительным клеткам.
2. Лизосомы, центриоли, микроворсинки присутствуют в основном только в клетках животных организмов.
3. Все остальные органоиды характерны как для растительных, так и для животных клеток.

Строение оболочки клеток

Клеточная оболочка располагается снаружи клетки, отграничивая последнюю от внешней или внутренней среды организма. Ее основу составляет плазмалемма (клеточная мембрана) и углеводно-белковая составляющая.

Функции клеточной оболочки:

– поддерживает форму клетки и придает механическую прочность клетке и организму в целом;
– защищает клетку от механических повреждений и попадания в нее вредных соединений;
– осуществляет узнавание молекулярных сигналов;
– регулирует обмен веществ между клеткой и средой;
– осуществляет межклеточное взаимодействие в многоклеточном организме.

Функция клеточной стенки:

– представляет собой внешний каркас – защитную оболочку;
– обеспечивает транспорт веществ (через клеточную стенку проходит вода, соли, молекулы многих органических веществ).

Наружный слой клеток животных, в отличие от клеточных стенок растений, очень тонкий, эластичный. Он не виден в световой микроскоп и состоит из разнообразных полисахаридов и белков. Поверхностный слой животных клеток называется гликокаликсом , выполняет функцию непосредственной связи клеток животных с внешней средой, со всеми окружающими ее веществами, опорной роли не выполняет.

Под гликокаликсом животной и клеточной стенкой растительной клетки расположена плазматическая мембрана, граничащая непосредственно с цитоплазмой. В состав плазматической мембраны входят белки и липиды. Они расположены упорядоченно за счет различных химических взаимодействий друг с другом. Молекулы липидов в плазматической мембране расположены в два ряда и образуют сплошной липидный бислой. Молекулы белков не образуют сплошного слоя, они располагаются в слое липидов, погружаясь в него на разную глубину. Молекулы белков и липидов подвижны.

Функции плазматической мембраны:

– образует барьер, отграничивающий внутреннее содержимое клетки от внешней среды;
– обеспечивает транспорт веществ;
– обеспечивает связь между клетками в тканях многоклеточных организмов.

Поступление веществ в клетку

Поверхность клетки не сплошная. В цитоплазматической мембране есть многочисленные мельчайшие отверстия – поры, через которые с помощью или без помощи специальных белков, внутрь клетки могут проникать ионы и мелкие молекулы. Кроме того, некоторые ионы и мелкие молекулы могут попадать в клетку непосредственно через мембрану. Поступление важнейших ионов и молекул в клетку не пассивная диффузия, а активный транспорт, требующий затрат энергии. Транспорт веществ носит избирательный характер. Избирательная проницаемость клеточной мембраны носит название полупроницаемости .

Путем фагоцитоза внутрь клетки поступают: крупные молекулы органических веществ, например белков, полисахаридов, частицы пищи, бактерии. Фагоцитоз осуществляется с участием плазматической мембраны. В том месте, где поверхность клетки соприкасается с частицей какого-либо плотного вещества, мембрана прогибается, образует углубление и окружает частицу, которая в «мембранной капсуле» погружается внутрь клетки. Образуется пищеварительная вакуоль, и в ней перевариваются поступившие в клетку органические вещества.

Путем фагоцитоза питаются амебы, инфузории, лейкоциты животных и человека. Лейкоциты поглощают бактерии, а также разнообразные твердые частицы, случайно попавшие в организм, защищая его таким образом от болезнетворных бактерий. Клеточная стенка растений, бактерий и синезеленых водорослей препятствует фагоцитозу, и потому этот путь поступления веществ в клетку у них не реализуется.

Через плазматическую мембрану в клетку проникают и капли жидкости, содержащие в растворенном и взвешенном состоянии разнообразные вещества.Это явление было названо пиноцитозом . Процесс поглощения жидкости сходен с фагоцитозом. Капля жидкости погружается в цитоплазму в «мембранной упаковке». Органические вещества, попавшие в клетку вместе с водой, начинают перевариваться под влиянием ферментов, содержащихся в цитоплазме. Пиноцитоз широко распространен в природе и осуществляется клетками всех животных.

III. Закрепление изученного материала

На какие две большие группы разделяются все организмы по строению ядра?
Какие органоиды свойственны только растительным клеткам?
Какие органоиды свойственны только животным клеткам?
Чем различается строение оболочки клеток растений и животных?
Каковы два способа поступления веществ в клетку?
Каково значение фагоцитоза для животных?

Органеллами (органоидами) клетки называют постоянные части клетки, имеющие определённое строение и выполняющие специфические функции. Различают мембранные и немембранные органеллы. К мембранным органеллам относят цитоплазматическую сеть (эндоплазматический ретикулум), пластинчатый комплекс (аппарат Гольджи), митохондрии, лизосомы, пероксисомы. Немембранные органеллы представлены рибосомами (полирибосомами), клеточным центром и элементами цитоскелета: микротрубочками и фибриллярными структурами.

Рис. 8. Схема ультрамикроскопического строения клетки:

1 – гранулярная эндоплазматическая сеть, на мембранах которой расположены прикреплённые рибосомы; 2 – агранулярная эндоплазматическая сеть; 3 – комплекс Гольджи; 4 – митохондрия; 5 – формирующаяся фагосома; 6 – первичная лизосома (гранула накопления); 7 – фаголизосома; 8 – эндоцитозные пузырьки; 9 – вторичная лизосома; 10 – остаточное тельце; 11 – пероксисома; 12 – микротрубочки; 13 - микрофиламенты; 14 – центриоли; 15 – свободные рибосомы; 16 – транспортные пузырьки; 17 – экзоцитозный пузырёк; 18 – жировые включения (липидная капля); 19 - включения гликогена; 20 – кариолемма (ядерная оболочка); 21 – ядерные поры; 22 – ядрышко; 23 – гетерохроматин; 24 – эухроматин; 25 – базальное тельце реснички; 26 - ресничка; 27 – специальный межклеточный контакт (десмосома); 28 – щелевой межклеточный контакт

2.5.2.1. Мембранные органоиды (органеллы)

Эндоплазматическая сеть (эндоплазматический ретикулум, цитоплазматическая сеть) - совокупность сообщающихся между собой канальцев, вакуолей и «цистерн», стенка которых образована элементарными биологическими мембранами. Открыта К.Р. Портером в 1945 го­ду. Открытие и описание эндоплазматической сети (ЭПС) обязано внедрению в практику цитологических исследований электронного микроскопа. Мембраны, образующие ЭПС, отличаются от плазмолеммы клетки меньшей толщиной (5-7 нм) и большей концентрацией белков, в первую очередь обладающих ферментативной активностью. Различают две разновидности ЭПС (рис. 8): шероховатую (гранулярную) и гладкую (агранулярную). Шероховатая ЭПС представлена уплощенными цистернами, на поверхности которых расположены рибосомы и полисомы. Мембраны гранулярной ЭПС содержат белки, способствующие связыванию рибосом и уплощению цистерн. Особенно хорошо развита шероховатая ЭПС в клетках, специализирующихся на белковом синтезе. Гладкую ЭПС формируют переплетающиеся канальцы, трубочки и небольшие пузырьки. Каналы и цистерны ЭПС этих двух разновидностей не разграничены: мембраны одного типа переходят в мембраны другого типа, формируя в области перехода так называемую переходную (транзиторную) ЭПС.

Основными функциями гранулярной ЭПС являются:

1) синтез на прикреплённых рибосомах белков (секретируемых белков, белков клеточных мембран и специфических белков содержимого мембранных органоидов); 2) гидроксилирование, сульфатирование, фосфорилирование и гликозилирование белков; 3) транспорт веществ в пределах цитоплазмы; 4) накопление как синтезируемых, так и транспортируемых веществ; 5) регуляция биохимических реакций, связанная с упорядоченностью локализации в структурах ЭПС веществ, вступающих в реакции, а также их катализаторов - ферментов.

Гладкая ЭПС отличается отсутствием на мембранах белков (рибофоринов), связывающих субъединицы рибосом. Предполагается, что гладкая ЭПС образуется в результате формирования выростов шероховатой ЭПС, мембрана которых утрачивает рибосомы.

Функциями гладкой ЭПС являются: 1) синтез липидов, включая мембранные липиды; 2) синтез углеводов (гликогена и др.); 3) синтез холестерина; 4) обезвреживание токсических веществ эндогенного и экзогенного происхождения; 5) накопление ионов Са 2+ ; 6) восстановление кариолеммы в телофазе митоза; 7) транспорт веществ; 8) накопление веществ.

Как правило, гладкая ЭПС развита в клетках слабее, чем шероховатая ЭПС, однако в клетках, вырабатывающих стероиды, триглицериды и холестерин, а также в клетках печени, осуществляющих детоксикацию различных веществ, она развита значительно лучше.

Рис. 9. Комплекс Гольджи:

1 – стопка уплощённых цистерн; 2 – пузырьки; 3 – секреторные пузырьки (вакуоли)

Переходная (транзиторная) ЭПС - это участок перехода гранулярной ЭПС в агранулярную ЭПС, который располагается у формирующейся поверхности комплекса Гольджи. Трубочки и канальцы переходной ЭПС распадаются на фрагменты, из которых образуются пузырьки, транспортирующие материал из ЭПС в комплекс Гольджи.

Пластинчатый комплекс (комплекс Гольджи, аппарат Гольджи) - органоид клетки, участвующий в окончательном формировании продуктов её жизнедеятельности (секретов, коллагена, гликогена, липидов и других продуктов), а также в синтезе гликопротеидов. Органоид назван по имени описавшего его в 1898 году итальянского гистолога К. Гольджи. Образован тремя составляющими (рис. 9): 1) стопкой уплощённых цистерн (мешочков); 2) пузырьками; 3) секреторными пузырьками (вакуолями). Зона скопления этих элементов получила название диктиосомы. Таких зон в клетке может быть несколько (иногда несколько десятков и даже сотен). Комплекс Гольджи располагается около ядра клетки, часто вблизи центриолей, реже рассеян по всей цитоплазме. В секреторных клетках он располагается в апикальной части клетки, через которую осуществляется выделение секрета путём экзоцитоза. От 3-х до 30-ти цистерн в виде изогнутых дисков диаметром 0,5-5 мкм образуют стопку. Смежные цистерны разделены пространствами в 15-30 нм. Отдельные группы цистерн в пределах диктиосомы отличаются особым составом ферментов, определяющих характер биохимических реакций, в частности процессинга белка и др.

Второй составляющий элемент диктиосомы - пузырьки представляют собой сферические образования диаметром 40-80 нм, умеренно плотное содержимое которых окружено мембраной. Пузырьки формируются путём отщепления от цистерн.

Третий элемент диктиосомы - секреторные пузырьки (вакуоли) представляют собой относительно крупные (0,1-1,0 мкм) сферические мембранные образования, содержащие секрет умеренной плотности, претерпевающий конденсацию и уплотнение (вакуоли конденсации).

Комплекс Гольджи отчётливо поляризован по вертикали. В нём выделяют две поверхности (два полюса):

1) цис-поверхность, или незрелую поверхность, которая имеет выпуклую форму, обращена к эндоплазматической сети (ядру) и связана с отделяющимися от неё мелкими транспортными пузырьками;

2) транс-поверхность, или поверхность, обращённую к плазмолемме вогнутой формы (рис. 8), со стороны которой от цистерн комплекса Гольджи отделяются вакуоли (секреторные гранулы).

Основными функциями комплекса Гольджи являются: 1) синтез гликопротеинов и полисахаридов; 2) модификация первичного секрета, его конденсация и упаковка в мембранные пузырьки (формирование секреторных гранул); 3) процессинг молекул (фосфорилирование, сульфатирование, ацилирование и т.п.); 4) накопление секретируемых клеткой веществ; 5) образование лизосом; 6) сортировка синтезированных клеткой белков у транс-поверхности перед их окончательным транспортом (производится посредством рецепторных белков, распознающих сигнальные участки макромолекул и направляющих их в различные пузырьки); 7) транспорт веществ: из транспортных пузырьков вещества проникают в стопку цистерн комплекса Гольджи с цис-поверхности, а выходят из неё в виде вакуолей с транс-поверхности. Механизм транспорта объясняют две модели: а) модель перемещения пузырьков, отпочковывающихся от предшествующей цистерны и сливающихся с последующей цистерной последовательно в направлении от цис-поверхности к транс-поверхности; б) модель перемещения цистерн, основанная на представлении о непрерывном новообразовании цистерн за счёт слияния пузырьков на цис-поверхности и последующем распаде на вакуоли цистерн, смещающихся к транс-поверхности.

Указанные выше основные функции позволяют констатировать, что пластинчатый комплекс - важнейший органоид клетки эукариот, обеспечивающий организацию и интеграцию внутриклеточного метаболизма. В этом органоиде протекают заключительные этапы формирования, созревания, сортировки и упаковки всех секретируемых клеткой продуктов, ферментов лизосом, а также белков и гликопротеинов поверхностного аппарата клетки и др. веществ.

Органоиды внутриклеточного переваривания. Лизосомы - это мелкие ограниченные элементарной мембраной пузырьки, содержащие гидролитические ферменты. Мембрана лизосом толщиной около 6 нм осуществляет пассивную компартментализацию, временно отделяя гидролитические ферменты (более 30 разновидностей) от гиалоплазмы. В неповреждённом состоянии мембрана устойчива к действию гидролитических ферментов и препятствует их утечке в гиалоплазму. В стабилизации мембраны важная роль принадлежит кортикостероидным гормонам. Повреждение мембран лизосом ведёт к самоперевариванию клетки гидролитическими ферментами.

Мембрана лизосом содержит АТФ-зависимый протонный насос, обеспечивающий закисление среды внутри лизосом. Последняя способствует активизации ферментов лизосом - кислых гидролаз. Наряду с этим мембрана лизосом содержит рецепторы, обусловливающие связывание лизосом с транспортными пузырьками и фагосомами. Мембрана обеспечивает также диффузию веществ из лизосом в гиалоплазму. Связывание части молекул гидролаз с мембраной лизосом ведёт к их инактивации.

Выделяют несколько разновидностей лизосом: первичные лизосомы (гидролазные пузырьки), вторичные лизосомы (фаголизосомы, или пищеварительные вакуоли), эндосомы, фагосомы, аутофаголизосомы, остаточные тельца (рис. 8).

Эндосомами называют мембранные пузырьки, переносящие макромолекулы от поверхности клетки в лизосомы путём эндоцитоза. В процессе переноса содержимое эндосом может не изменяться или претерпевать частичное расщепление. В последнем случае в эндосомы проникают гидролазы или эндосомы непосредственно сливаются с гидролазными пузырьками, вследствие чего среда постепенно закисляется. Эндосомы разделяют на две группы: ранние (периферические) и поздние (перинуклеарные) эндосомы.

Ранние (периферические) эндосомы формируются на ранних этапах эндоцитоза после отделения пузырьков с захваченным содержимым от плазмолеммы. Они располагаются в периферических слоях цитоплазмы и характеризуются нейтральной или слабощелочной средой. В них происходит отщепление лигандов от рецепторов, сортировка лигандов и, возможно, возвращение рецепторов в специальных пузырьках в плазмолемму. Наряду с этим в ранних эндосомах может происходить расщепление ком-

Рис. 10 (А). Схема образования лизосом и их участия во внутриклеточном пищеварении. (Б) Электронная микрофотография среза вторичных лизосом (обозначены стрелками):

1 – образование из гранулярной эндоплазматической сети мелких пузырьков с ферментами; 2 – перенос ферментов в аппарат Гольджи; 3 – образование первичных лизосом; 4 – выделение и использование (5) гидролаз при внеклеточном ращеплении; 6 - фагосомы; 7 – слияние первичных лизосом с фагосомами; 8, 9 – образование вторичных лизосом (фаголизосом); 10 – экскреция остаточных телец; 11 – слияние первичных лизосом с разрушающимися структурами клетки; 12 – аутофаголизосома

плексов «рецептор-гормон», «антиген-антитело», ограниченное расщепление антигенов, инактивация отдельных молекул. В условиях закисления (рН=6,0) среды в ранних эндосомах может происходить частичное расщепление макромолекул. Постепенно, перемещаясь вглубь цитоплазмы, ранние эндосомы превращаются в поздние (перинуклеарные) эндосомы, располагающиеся в глубоких слоях цитоплазмы, окружающих ядро. Они достигают 0,6-0,8 мкм в диаметре и отличаются от ранних эндосом более кислым (рН=5,5) содержимым и более высоким уровнем ферментативного переваривания содержимого.

Фагосомы (гетерофагосомы) - мембранные пузырьки, которые содержат захваченный клеткой извне материал, подлежащий внутриклеточному перевариванию.

Первичные лизосомы (гидролазные пузырьки) - пузырьки диаметром 0,2-0,5 мкм, содержащие неактивные ферменты (рис.10). Их перемещение в цитоплазме контролируется микротрубочками. Гидролазные пузырьки осуществляют транспорт гидролитических ферментов из пластинчатого комплекса к органоидам эндоцитозного пути (фагосомам, эндосомам и т.п.).

Вторичные лизосомы (фаголизосомы, пищеварительные вакуоли) - пузырьки, в которых активно осуществляется внутриклеточное переваривание посредством гидролаз при рН≤5. Их диаметр достигает 0,5-2 мкм. Вторичные лизосомы (фаголизосомы и аутофаголизосомы) формируются путём слияния фагосомы с эндосомой или первичной лизосомой (фаголизосомы) либо путём слияния аутофагосомы (мембранного пузырька, содержащего собственные компоненты клетки) с первичной лизосомой (рис. 10) или поздней эндосомой (аутофаголизосомы). Аутофагия обеспечивает переваривание участков цитоплазмы, митохондрий, рибосом, фрагментов мембран и т.п. Убыль последних в клетке компенсируется их новообразованием, что ведёт к обновлению («омоложению») клеточных структур. Так, в нервных клетках человека, функционирующих многие десятилетия, большинство органоидов обновляется в течение 1 месяца.

Разновидность лизосом, содержащих непереваренные вещества (структуры), названа остаточными тельцами. Последние могут длительно находиться в цитоплазме или выделять своё содержимое путём экзоцитоза за пределы клетки (рис. 10). Распространённым видом остаточных телец в организме животных являются липофусциновые гранулы , представляющие собой мембранные пузырьки (0,3-3 мкм), содержащие труднорастворимый коричневый пигмент липофусцин.

Пероксисомы представляют собой мембранные пузырьки диаметром до 1,5 мкм, матрикс которых содержит около 15 ферментов (рис. 8). Среди последних наиболее важны каталаза, на которую приходится до 40% общего белка органоида, а также пероксидаза, оксидаза аминокислот и др. Пероксисомы образуются в эндоплазматическом ретикулуме и обновляются каждые 5-6 дней. Наряду с митохондриями, пероксисомы являются важным центром утилизации кислорода в клетке. В частности, под воздействием каталазы распадается перекись водорода (Н 2 О 2), образующаяся в ходе окисления аминокислот, углеводов и др. веществ клетки. Таким образом, пероксисомы защищают клетку от повреждающего эффекта перекиси водорода.

Органоиды энергетического обмена. Митохондрии описаны впервые Р. Келликером в 1850 году в мышцах насекомых под названием саркосом. Позднее они изучались и описывались Р. Альтманом в 1894 году как «биопласты», а в 1897 году К. Бенда назвал их митохондриями. Митохондрии представляют собой мембранные органоиды, обеспечивающие клетку (организм) энергией. Источником запасаемой в виде фосфатных связей АТФ энергии являются процессы окисления. Наряду с этим митохондрии участвуют в биосинтезе стероидов и нуклеиновых кислот, а так­же в окислении жирных кислот.

М

Рис. 11. Схема строения митохондрии:

1 – наружная мембрана; 2 – внутренняя мембрана; 3 – кристы; 4 – матрикс


итохондрии имеют эллиптическую, сферическую, палочковидную, нитевидную и др. формы, которые могут изменяться в течение определенного времени. Их размеры составляют 0,2-2 мкм в ширину и 2-10 мкм в длину. Количество митохондрий в различных клетках варьирует в широких пре­делах, достигая в наиболее активных 500-1000. В клетках печени (гепатоцитах) их число составляет около 800, а занимаемый ими объем равен примерно 20% объема цитоплазмы. В цитоплазме митохондрии могут располагаться диффузно, однакообычно они сосредоточены в участках максимального потребления энергии, например, вблизи ионных насосов, сократимых элементов (миофибрилл), органелл движения (аксонема спермия). Митохондрии состоят из наружной и внутренней мембран, разделенных межмембранным пространством, и содержат митохондриальный матрикс, в который обращены складки внутренней мембраны - кристы (рис. 11, 12).

Н

Рис. 12. Электронная фотография митохондрии (поперечный разрез)

аружная мембрана митохондрий сходна с плазмолеммой. Она отличается высокой проницаемостью, обеспечивая проникновение молекул с массой менее 10 килодальтон из цитозоля в межмембранное пространство митохондрий. Наружная мембрана содержит порин и другие транспортные белки, а также рецепторы, распознающие переносимые белки в зонах слипания наружной и внутренней мембран.

Межмембранное пространство митохондрий шириной 10-20 нм содержит небольшое количество ферментов. Его ограничивает изнутри внутренняя мембрана митохондрий, содержащая транспортные белки, ферменты дыхательной цепи и сукцинатдегидрогеназу, а также комплекс АТФ-синтетазы. Внутренняя мембрана характеризуется низкой проницаемостью для мелких ионов. Она формирует складки толщиной 20 нм, которые располагаются чаще всего перпендикулярно продольной оси митохондрий, а в некоторых случаях (мышечные и др. клетки) - продольно. С повышением активности митохондрий количество складок (их общая площадь) возрастает. На кристах находятся оксисомы - грибовидные образования, состоящие из округлой головки диаметром 9 нм и ножки толщиной 3 нм. В области головки происходит синтез АТФ. Процессы окисления и синтеза АТФ в митохондриях разобщены, из-за чего не вся энергия накапливается в АТФ, рассеиваясь частично в виде тепла. Такое разобщение наиболее выражено, например, в бурой жировой ткани, используемой для весеннего «разогрева» находившихся в состоянии «зимней спячки» животных.

Внутренняя камера митохондрии (область между внутренней мембраной и кристами) заполнена матриксом (рис. 11, 12), содержащим ферменты цикла Кребса, ферменты белкового синтеза, ферменты окисления жирных кислот, митохондриальную ДНК, рибосомы и митохондриальные гранулы.

Митохондриальная ДНК представляет собственный генетический аппарат митохондрий. Она имеет вид кольцевой двухцепочечной молекулы, в которой содержится около 37 генов. Митохондриальная ДНК отличается от ядерной ДНК низким содержанием некодирующих последовательностей и отсутствием связей с гистонами. Митохондриальная ДНК кодирует иРНК, тРНК и рРНК, однако обеспечивает синтез только 5-6% митохондриальных белков (ферментов системы транспорта ионов и некоторых ферментов синтеза АТФ). Синтез всех других белков, а также удвоение митохондрий контролируются ядерной ДНК. Большая часть рибосомальных белков митохондрий синтезируется в цитоплазме, а затем транспортируется в митохондрии. Наследование митохондриальной ДНК у многих видов эукариот, включая человека, происходит только по материнской линии: митохондриальная ДНК отца исчезает при гаметогенезе и оплодотворении.

Митохондрии имеют относительно короткий жизненный цикл (около 10 суток). Разрушение их происходит путём аутофагии, а новообразование - путём деления (перешнуровки) предшествующих митохондрий. Последнему предшествует репликация митохондриальной ДНК, которая происходит независимо от репликации ядерной ДНК в любые фазы клеточного цикла.

У прокариот митохондрии отсутствуют, и их функции выполняет клеточная мембрана. Согласно одной из гипотез, митохондрии произошли из аэробных бактерий в результате симбиогенеза. Существует предположение об участии митохондрий в передаче наследственной информации.

Многоклеточного организма. Органоиды противопоставляют временным включениям клетки, которые появляются и исчезают в процессе обмена веществ.

Иногда органоидами считают только постоянные структуры клетки, расположенные в её цитоплазме . Часто ядро и внутриядерные структуры (например, ядрышко) не называют органоидами. Клеточную мембрану , реснички и жгутики тоже обычно не причисляют к органоидам.

См. также

  • Полимеризация органоидов в ходе эволюции протист

Литература


Wikimedia Foundation . 2010 .

Смотреть что такое "Органоиды" в других словарях:

    - (от орган и греч. eidos вид) постоянные специализированные структуры в клетках животных и растений. К органоидам относят хромосомы, митохондрии, аппарат Гольджи, эндоплазматическую сеть, рибосомы и др., а в растительных клетках, кроме того,… … Большой Энциклопедический словарь

    - (от греч. organon орган и eidos вид), постоянные клеточные структуры, клеточные органы, обеспечивающие выполнение специфич. функций в процессе жизнедеятельности клетки хранение и передачу генетич. информации, транспорт веществ, синтез и… … Биологический энциклопедический словарь

    - (органеллы) постоянные структуры бактер. или др. клетки, выполняющие специализированные функции. К О. бактерий относят: нуклеоид, цитоплазму, рибосомы, мезосомы, плазмиды, цитоплазматическую мембрану, перипласт, клеточную стенку, капсулу, жгутики … Словарь микробиологии

    ОРГАНОИДЫ - ОРГАНОИДЫ, ОРГАНЕЛЛЫ, так называются, в противоположность органам многоклеточных животных, части единственной клетки простейших организмов (Protozoa), служащие им для выполнения различных жизненных функций, напр. реснички, пищеварительные… … Большая медицинская энциклопедия

    - (от орган и греч. éidos вид), постоянные специализированные структуры в клетках животных и растений. К органоидам относят хромосомы, митохондрии, аппарат Гольджи, эндоплазматическую сеть, рибосомы и др., а в растительных клетках, кроме того,… … Энциклопедический словарь

    - (орган гр. eidos вид) постоянно присутствующие в животной или растительной клетке включения, выполняющие определенные жизненные функции, напр, митохондрии, центросома, пластиды; иногда термин о. употребляют как синоним ореанелл, Новый словарь… … Словарь иностранных слов русского языка

    - (от Орган и греч. éidos вид) постоянные структуры животных и растительных клеток. Каждый О. осуществляет определённые функции, жизненно необходимые для клеток. Т. о., любое проявление жизнедеятельности клетки следствие согласованной… … Большая советская энциклопедия

    Мн. Постоянные части животной или растительной клетки, выполняющие определённые функции в её жизнедеятельности. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

    - (от орган и греч. eidos вид), постоянные специализир. структуры в клетках ж ных и р ний. К О. относят хромосомы, митохондрии, аппарат Гольджи, эндоплазматич. сеть, рибосомы и др., а в растит. клетках, кроме того, пластиды. Часто О. наз. также… … Естествознание. Энциклопедический словарь

    органоиды - см. органеллы … Анатомия и морфология растений

Элементарной и функциональной единицей всего живого на нашей планете является клетка. В данной статье Вы подробно узнаете об её строении, функциях органоидов, а также найдёте ответ на вопрос: «Чем отличается строение клеток растений и животных?».

Строение клетки

Наука, которая изучает строение клетки и её функции, называется цитологией. Несмотря на свои незначительные размеры, данные части организма имеют сложную структуру. Внутри находится полужидкое вещество, именуемое цитоплазмой. Здесь проходят все жизненно важные процессы и располагаются составляющие части - органоиды. Узнать об их особенностях Вы сможете далее.

Ядро

Самой важной частью является ядро. От цитоплазмы его отделяет оболочка, которая состоит из двух мембран. В них имеются поры, чтобы вещества могли попадать из ядра в цитоплазму и наоборот. Внутри находится ядерный сок (кариоплазма), в котором располагается ядрышко и хроматин.

Рис. 1. Строение ядра.

Именно ядро управляет жизнедеятельностью клетки и хранит генетическую информацию.

Функциями внутреннего содержимого ядра являются синтезирование белка и РНК. Из них образуются особые органеллы - рибосомы.

Рибосомы

Располагаются вокруг эндоплазматической сети, при этом делая её поверхность шероховатой. Иногда рибосомы свободно располагаются в цитоплазме. К их функциям относится биосинтез белка.

ТОП-4 статьи которые читают вместе с этой

Эндоплазматическая сеть

ЭПС может иметь шероховатую либо гладкую поверхность. Шероховатая поверхность образуется за счёт наличия рибосом на ней.

К функциям ЭПС относится синтез белка и внутренняя транспортировка веществ. Часть образованных белков, углеводов и жиров по каналам эндоплазматической сети поступает в особые ёмкости для хранения. Называются эти полости аппаратом Гольджи, представлены они в виде стопок «цистерн», которые отделены от цитоплазмы мембраной.

Аппарат Гольджи

Чаще всего располагается вблизи ядра. В его функции входит преобразование белка и образование лизосом. В данном комплексе хранятся вещества, которые были синтезированы самой клеткой для потребностей всего организма, и позднее выведутся из неё.

Лизосомы представлены в виде пищеварительных ферментов, которые заключены с помощью мембраны в пузырьки и разносятся по цитоплазме.

Митохондрии

Эти органоиды покрыты двойной мембраной:

  • гладкая - наружная оболочка;
  • кристы - внутренний слой, имеющий складки и выступы.

Рис. 2. Строение митохондрий.

Функциями митохондрий является дыхание и преобразование питательных веществ в энергию. В кристах находится фермент, который синтезирует из питательных веществ молекулы АТФ. Это вещество является универсальным источником энергии для всевозможных процессов.

Клеточная стенка отделяет и защищает внутреннее содержимое от внешней среды. Она поддерживает форму, обеспечивает взаимосвязь с другими клетками, обеспечивает процесс обмена веществ. Состоит мембрана из двойного слоя липидов, между которыми находятся белки.

Сравнительная характеристика

Растительная и животная клетка отличаются друг от друга своим строением, размерами и формами. А именно:

  • клеточная стенка у растительного организма имеет плотное строение за счёт наличия целлюлозы;
  • у растительной клетки есть пластиды и вакуоли;
  • животная клетка имеет центриоли, которые имеют значение в процессе деления;
  • наружная мембрана животного организма гибкая и может приобретать различные формы.

Рис. 3. Схема строения растительной и животной клетки.

Подытожить знания про основные части клеточного организма поможет следующая таблица:

Таблица «Строение клетки»

Органоид

Характеристика

Функции

Имеет ядерную оболочку, внутри которой содержится ядерный сок с ядрышком и хроматином.

Транскрипция и хранение ДНК.

Плазматическая мембрана

Состоит из двух слоёв липидов, которые пронизаны белками.

Защищает содержимое, обеспечивает межклеточные обменные процессы, реагирует на раздражитель.

Цитоплазма

Полужидкая масса, содержащая липиды, белки, полисахариды и пр.

Объединение и взаимодействие органелл.

Мембранные мешочки двух типов (гладкие и шероховатые)

Синтез и транспортировка белков, липидов, стероидов.

Аппарат Гольджи

Располагается возле ядра в виде пузырьков или мембранных мешочков.

Образует лизосомы, выводит секреции.

Рибосомы

Имеют белок и РНК.

Образуют белок.

Лизосомы

В виде мешочка, внутри которого находятся ферменты.

Переваривание питательных веществ и отмерших частей.

Митохондрии

Снаружи покрыты мембраной, содержат кристы и многочисленные ферменты.

Образование АТФ и белка.

Пластиды

Покрыты мембраной. Представлены тремя видами: хлоропласты, лейкопласты, хромопласты.

Фотосинтез и запас веществ.

Мешочки с клеточным соком.

Регулируют давление и сохраняют питательные вещества.

Центриоли

Имеет ДНК, РНК, белки, липиды, углеводы.

Участвует в процессе деления, образуя веретено деления.

Что мы узнали?

Живой организм состоит из клеток, которые имеют достаточно сложное строение. Снаружи она покрыта плотной оболочкой, которая защищает внутреннее содержимое от воздействия внешней среды. Внутри находится ядро, регулирующее все происходящие процессы и хранящее генетический код. Вокруг ядра расположена цитоплазма с органоидами, каждый из которых имеет свои особенности и характеристику.

Тест по теме

Оценка доклада

Средняя оценка: 4.3 . Всего получено оценок: 1987.